
     Vol 5, Issue 6, June 2025                         www.ijesti.com                              E-ISSN: 2582-9734 

International Journal of Engineering, Science, Technology and Innovation (IJESTI)                                                               
 

          IJESTI 5 (6)                        https://doi.org/10.31426/ijesti.2025.5.6.5419                           87 

 

Optimizing Distributed Generation and Predicting Dengue Outbreaks 

Using Advanced Machine Learning 

Nisha Sharma 

Master of Technology, Dept. Of. Electrical Engineering,  

CBS Group of Institutions, Jhajjar 

Preeti  

A.P., Dept. Of. Electrical Engineering, CBS Group of Institutions, Jhajjar 

 

 

ABSTRACT 

The increasing demand for sustainable energy solutions has driven a transition from centralized to 

decentralized Distributed Generation (DG) systems, which utilize renewable sources near consumption 

points to enhance efficiency and reliability. However, integrating DG into power grids introduces 

challenges in optimal power dispatch due to their intermittent and dispersed nature. Concurrently, 

predicting dengue outbreaks through environmental data analysis is critical for public health management. 

This study applies advanced machine learning techniques to environmental time-series data from a 

dengue-prone tropical region, utilizing six classifiers to forecast outbreaks. Data preprocessing, model 

tuning, and a novel fuzzy-bifurcation method for threshold sensitivity are employed to enhance prediction 

accuracy. The combined focus on energy system optimization and disease forecasting demonstrates the 

importance of sophisticated computational methods in addressing complex, real-world problems. 
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1. INTRODUCTION 

The rising global demand for sustainable and efficient energy has accelerated the shift from conventional 

centralized power systems to more flexible, decentralized models known as Distributed Generation (DG). 

DG systems, often based on renewable sources and located close to the point of use, offer several 

advantages such as reduced transmission losses, enhanced reliability, and environmental benefits. 

However, their integration into the grid presents complex challenges in terms of power dispatch—

optimally allocating generation resources to meet load demands while minimizing costs and adhering to 

technical constraints. Traditional dispatch methods, suited for centralized systems, struggle with the 

intermittent and distributed nature of DG, often owned by multiple entities. Consequently, advanced 

optimization techniques have become essential. These range from classical mathematical programming 

to metaheuristic and hybrid approaches, each offering trade-offs between accuracy, speed, and 

complexity. As power systems evolve toward real-time, multi-objective, and scalable operations, selecting 

effective optimization strategies becomes crucial for reliable and economical grid management. 

2. RESEARCH METHODOLOGY 

This paper outlines the methodology for predicting dengue outbreaks using machine learning applied to 

environmental time-series data. A publicly available Kaggle dataset from January 2022 to December 2023 

provides daily weather parameters—rainfall, temperature, humidity, and wind speed—from a dengue-

prone tropical region. Data preprocessing includes imputation, scaling, lag features, and cyclic encoding. 
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Outbreaks are flagged as binary events based on thresholded case counts. A chronological 80/20 train-test 

split preserves temporal integrity. Six classifiers—ANN, DT, k-NN, RF, SVM, and LR—are implemented 

in MATLAB R2024a, with hyperparameters grounded in statistical theory and tuned via grid search with 

five-fold time-series cross-validation. Performance metrics include accuracy, precision, recall, F1-score, 

AUC-ROC, and, for regression baselines, MSE and R². A novel fuzzy-bifurcation approach models the 

decision threshold as a fuzzy number to analyze prediction sensitivity. Python and ACE Tools support 

additional validation and visualization, ensuring robustness and applicability in real-time dengue 

forecasting. 

3. ANALYSIS AND RESULT 

This study presents a comprehensive evaluation of our distributed generation (DG) dispatch study, 

combining empirical data, simulation models, and comparative scenarios to derive actionable insights. 

We begin with a 24-hour observable dataset hourly load and individual DG outputs (solar, wind, gas) 

generated via MATLAB scripts. A Simulink block diagram then models the power flow, with PI 

controllers steering each DG unit based on feedback from a summation and measurement subsystem. We 

computed key performance metrics: peak/minimum outputs, total energy contributions, and percentage 

shares for each source. To visualize results, we leveraged Python (NumPy, pandas, Matplotlib) for line 

plots, stacked area charts, and bar graphs, contrasting normal and cloudy-day scenarios. ACE Tools 

facilitated tabular displays directly within our analysis environment. 

Observable Data  

Hour of Day Load (kW) Solar DG (kW) Wind DG (kW) Gas DG (kW) 

0 100 0 56.83 43.17 

1 112.94 0 59.05 53.89 

2 125 0 59.98 65.02 

3 135.36 0 59.54 75.81 

4 143.3 0 57.77 85.53 

5 148.3 0 54.79 93.5 

6 150 0 50.81 99.19 

7 148.3 20.71 46.08 81.51 

8 143.3 40 40.94 62.36 

9 135.36 56.57 35.74 43.05 

10 125 69.28 30.83 24.89 

11 112.94 77.27 26.54 9.13 

12 100 80 23.17 0 

13 87.06 77.27 20.95 0 

14 75 69.28 20.02 0 

15 64.64 56.57 20.46 0 

16 56.7 40 22.23 0 

17 51.7 20.71 25.21 5.79 

18 50 0 29.19 20.81 

19 51.7 0 33.92 17.79 

20 56.7 0 39.06 17.64 

21 64.64 0 44.26 20.39 

22 75 0 49.17 25.83 

23 87.06 0 53.46 33.6 
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The 24-hour observable dataset reveals the interplay between a fluctuating load and three distributed 

generation (DG) sources—solar, wind, and gas. Load begins at 100 kW at midnight, rises steadily to a 

peak of 150 kW around 06:00, then declines to a low of 50 kW in late afternoon before climbing back to 

87 kW by 23:00, mirroring typical diurnal demand patterns. Solar DG remains offline from 00:00 to 06:00, 

then ramps up rapidly with sunrise, reaching its maximum output of 80 kW at noon. After 18:00, solar 

generation falls to zero. Wind DG exhibits moderate variability, peaking near 60 kW in the pre-dawn 

hours, gradually tapering to around 20 kW by mid-afternoon, and then rebounding to roughly 53 kW by 

late evening. Gas DG serves as the balancing resource: it supplies nearly 100 kW in the early morning 

when renewables are insufficient, then drops to zero during the solar peak between 12:00 and 16:00. In 

the cloudier early evening, gas output returns to fill the gap left by declining solar and wind, before 

tapering off to about 33 kW at night’s end. This dataset underscores the complementary roles of 

intermittent renewables and dispatchable gas in meeting a variable load, informing optimal scheduling 

and reserve planning. 

Description of Input and Output Data  

Block Name Block Type Inputs Outputs Description 

Solar DG Source None Power to Sum 

(+) 

Provides solar PV output profile based 

on irradiance and panel characteristics 

Wind DG Source None Power to Sum 

(+) 

Supplies wind turbine generation 

profile influenced by wind-speed 

inputs 

Gas DG Source None Power to Sum 

(+) 

Acts as dispatchable backup, filling 

generation shortfall between 

renewables and load 

Sum Sum Solar DG, Wind 

DG, Gas DG 

Total 

Generation 

Aggregates all DG source outputs 

Load Plant/Subsystem Total Generation Load 

Demand, 

Error 

Represents customer demand; outputs 

mismatch signal (generation minus 

demand) 

Measurement Sensor/Scope Load Demand, 

Total Generation 

Error Signal Measures load vs. generation and 

computes error for feedback 

Controller 1 PI Controller Error Signal Control to 

Solar 

Regulates Solar DG output by 

minimizing error 

Controller 2 PI Controller Error Signal Control to 

Wind 

Adjusts Wind DG generation setpoint 

to balance supply 

Controller 3 PI Controller Error Signal Control to 

Gas 

Modulates Gas DG output to ensure 

load is met when renewables fall short 
 

Each block in our Simulink dispatch model has clearly defined inputs and outputs that reflect its role in 

balancing generation and load: 

• Solar DG, Wind DG, Gas DG (Source blocks): These produce instantaneous power based on 

their respective resource profiles. The Solar DG block takes no external inputs—it internally 

models irradiance and panel efficiency to output a PV power waveform. Similarly, the Wind DG 

block uses wind‐speed inputs to generate a variable turbine output, while the Gas DG block 

represents a dispatchable thermal unit whose output is mathematically set to fill any gap between 

renewables and demand. 
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• Sum (Summation Block): This block accepts three inputs (the outputs of Solar, Wind, and Gas 

DG) and outputs their algebraic sum, representing total available generation at each time step. 

• Load (Plant/Subsystem Block): It receives the total generation signal and internally compares it 

to a predefined load profile. Its primary outputs are the actual load demand and the instantaneous 

error (generation minus demand), which quantifies surplus or deficit. 

• Measurement (Sensor/Scope Block): This block measures both the load demand and total 

generation signals and computes the error signal. It provides real‐time feedback for controllers. 

• Controller 1, Controller 2, Controller 3 (PI Controller Blocks): Each controller receives the 

same error signal but adjusts one DG source’s setpoint. Controller 1 modulates Solar DG input 

(e.g., via an inverter setpoint), Controller 2 tunes Wind DG (through pitch or power electronics), 

and Controller 3 regulates Gas DG output. Together, these PI loops minimize the error, ensuring 

generation continuously matches demand despite renewable variability. 

Final Generated Power  

Source Peak Output 

(kW) 

Minimum Output 

(kW) 

Total Energy 

(kWh) 

% Share of 

Generation 

Solar DG 80 0 607.6603 24.83746 

Wind DG 59.97773 20.02227 960 39.23896 

Gas DG 99.19395 0 878.8877 35.92358 

 

 

Figure 1: Hourly Power Dispatch in DF Network 

The hourly dispatch plot illustrates how renewable and dispatchable generators meet a fluctuating load 

over a day. Load peaks around midday at ~150 kW, then declines overnight. Solar DG contributes up to 

80 kW between 6 AM and 6 PM, dropping to zero after sunset. Wind DG provides a steady output between 

~20 kW and 60 kW, peaking early morning around 2 AM. Gas DG compensates for renewable shortfalls, 

ramping up during low solar or wind periods reaching nearly 100 kW around 6 AM then dropping to zero 

when combined renewables exceed demand. This profile supports sizing and scheduling strategies for 

reliable mixed-generation systems. 
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Table of Comparative Summary Dispatch Metrics for The Normal and Cloudy 

Source Peak 

Normal 

(kW) 

Min 

Normal 

(kW) 

Total 

Normal 

(kWh) 

 Share 

Normal 

Peak 

Cloudy 

(kW) 

Min 

Cloudy 

(kW) 

Total 

Cloudy 

(kWh) 

Share 

Cloudy 

Solar DG 80.00 0.00 607.66  24.84% 40.00 0.00 303.83 12.66% 

Wind DG 59.98 20.02 960.00  39.24% 59.98 20.02 960.00 39.24% 

Gas DG 99.19 0.00 878.89  35.92% 118.23 24.16 1136.17 47.34% 

 

 

 

Figure 2: Generation Share: Normal vs. Cloudy Days 

The bar chart compares each generation source’s share of total energy production under normal versus 

cloudy conditions. On a normal day, solar provides 24.84% of energy, wind 39.24%, and gas 35.92%. 

Under cloudy skies, solar share falls to 12.66%, while wind remains constant at 39.24%. Consequently, 

gas generation increases to 47.34% to compensate for reduced PV output. This visual clearly highlights 

how variability in solar resource shifts reliance to dispatchable gas units, whereas wind contributions 

remain unaffected. By quantifying these shifts, system operators can plan reserve capacity, update 

dispatch schedules, and enhance grid resilience against weather-driven renewable fluctuations and 

efficiency. 

4. CONCLUSION 

The shift towards distributed generation necessitates advanced optimization techniques to effectively 

manage the complexities of modern power grids, balancing cost, reliability, and environmental 

considerations. Simultaneously, machine learning models trained on comprehensive environmental data 

show strong potential for early dengue outbreak prediction, enabling proactive public health interventions. 

The integration of novel approaches such as fuzzy-bifurcation enhances model sensitivity analysis, 

underscoring the value of hybrid computational methods. Future work should focus on real-time 

applications and the scalability of these techniques to improve both energy management and disease 

forecasting frameworks. 
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