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ABSTRACT 
 

A mathematical model that describes the process of the reversal magnetization of an amorphous microwire 

with the help of a large Barkhausen jump is proposed. The model has been estimated with regard to the 

optimization of the signal-to-noise ratio.   
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Introduction 
 
A property of a cast glass-coated amorphous micro- and nanowire (CGCMNW) with the positive 

magnetostriction and a wide range of microwire strand radii (from 50 to 0.1 μm) to be reversely 

magnetized in a single large Barkhausen jump (LBJ) is sometimes used to indicate the magnetic field (see 

more in [1]). The aim of this work is to survey the available data concerning LBJ (for instance, see [2–

8]); emphasizing the results which are fundamentally new. This will help to outline the directions for 

further development, namely, of the method of the phenomenological equation of motion of a domain 

wall (DW) [7, 8]. As it is difficult to choose unequivocally a model of the phenomenological motion 

equation for a DW, one needs to use some notions of micromagnetism in order to simulate probable 

physical processes [5, 6, 9]. We intend to find a consistency between the proposed mathematical model 

and parameters of a DW [5, 6] for physical interpretation of the processes that describe LBJ. The outline 

of the paper is as follows. First, we will present the previous theory [2–4], modified in [6–8]. Then we are 

briefly describing the theory of the CGCMNW DW [5], adding some new important results. Next, we 

substantiate a modification of the phenomenological approach to dynamics of a DW in order to produce 

a qualitatively new phenomenon – stochastic resonance that has been already offered in [8] for CGCMNW 

for a particular case. In order not to overload the text, we present the detailed calculation data for residual 

stresses, partially described in [5], in Appendix 1. The exchange energy formula is calculated in Appendix 

2.   
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Phenomenological Mathematical Model of the Motion of a Domain Wall 
 

Dynamics of a DW is studied using the solution of the Döring equation (see, for instance, [2–4]): 

                                                                                                               ( ) ( )β 2 ,ef i Sm x x F x M SH t+ + =                                             

(1) 

 

where mef  is the effective mass of DW,  is the phenomenological attenuation coefficient, F(x) is the 

force function that characterizes the action of a magnetic matter on DW.  This force describes the gradient 

of the potential relief (GPR).   

   

 

 

 

Fig. 1. Relaxation (at the left) and acceleration (at the right) forms of the EMF pulses at LBJ that are fixed 

on the CGCMNW samples with the iron-based strand material (with positive magnetostriction) [2–7]. We 

are mainly interested in the relaxation form of the DW motion.   

According to [5, 6] it is assumed that F(x) appears primarily due to residual stresses. An external field 

with the intensity H exerts the 2MSSH pressure on the 180  DW (MS is the saturation magnetization; S is 

the area of a DW). The generalized coordinate x is the analog of the radial coordinate of a cylinder but its 

range of definition may be formally extended from     - to   that is determined by the correlation of the 

calculation data with experimental results. 

  According to [2–7] the F(x) force that affects DW can be described in mathematical formalism of spline 

functions (SF). These functions can be presented in the simplest form as, for instance, in [7]:   
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where Rm corresponds to the radius of the microwire strand, and ci is the dimension of the range, in our 

case it is similar to the dimension of the plastic strain range (see below).  

 

                                                  

          

Fig. 2. Form of  F(x) function (2) which approximates SF for the values of Fm and ci parameters in the 

case of the relaxation form of the EMF pulse for LBJ.   

We assume that the DW moves from the CGCMNNW center to the outer surface of the strand. As the 

EMF pulse waveform (see Fig. 1) in the measuring coil should vary with the rate of the DW motion, this 

EMF waveform should correspond to the F(x) function (Fig. 2).   

 In this case the quantities Fm, ci and others, which determine the coefficients in polynoms, can be easily 

calculated from the LBJ oscillograph records (see [2–4] and the text below. Thus, the computations show 

that the model qualitatively describes both the relaxation and acceleration mechanisms (for more detail 

see below and in [3, 4]), i. e. the pulses with a steep rise edge and a flat droop or with a flat rise and a 

steep droop (Fig. 1).   

 It was found that the values of coefficients in SF should also be in agreement with micromagnetic 

parameters; this will be considered below. We will show that it is not sufficient to present SF in the form 

of formula (2) in order to simulate LBJ in CGCMNW. Some modified theory is reported. But at first we 

are going to discuss some earlier works and demonstrate a good agreement between a simpler variation 

of the theory with experiment, in particular, with vicalloy actuations [3, 4].  

 

Comparison of Calculations Using Phenomenological Model with Experimental Results 

 In earlier works [3, 4], when describing shift mechanisms for ferromagnetics mathematically, researchers 

used a simplified SF, i.e. F(x) that represents GPR. This function had the following form: 
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This approximation of SF made it possible to vary physical parameters which changed the character of 

the DW motion and the EMF signal. For this purpose they changed the depth Fm, the radius Rm and  the 

position of the minimum c. Thus (see Fig. 3a, b):  

a) fitting the parameters of SF it is possible to obtain the similarity of the calculation relationships for the 

DW motion rate which is proportional to EMF, i.e. to the quantity e(t) that is estimated experimentally 

using a measuring coil (See Fig. 3a);  

b) the simulation data received for magnetic (vicalloy) wires are in quite good agreement with the EMF 

impulses from LBJ (see Fig. 3b);       

c) in magnetic amorphous microwires and particularly in CGCMNW this method allowed an adequate 

description of the acceleration form of the DW motion. However, in order to describe the relaxation form 

of the pulse with a sharp initial edge it is necessary to take into account the starting motion velocity of 

DW, which can be found from the form of SF as presented in formula (2) 

 

 

 
Fig. 3. Visual aid of the forms of the velocity functions x’(t) (a). 
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Experimental oscillograms of EMF  e(t) estimated using a measuring coil [3, 4] (b).  

Depending on the SF parameters one observes the relaxation (first) or acceleration (ninth] forms of pulse 

of EMF from LBJ, which are also recorded on the CGCMNW samples with the iron-based strand material 

(with positive magnetostriction) [6].  

 
 
 

 
 

 
 

Fig. 3a. Example of calculation of forms of movement DW under formulas (2а) 
 
 
 
Comparison of Micromagnetic Parameters of a Domain Wall with Mathematic Model 

As noted above, the calculation of residual stresses in CGCMNW (see [5] and appendix 1) as well as the 

simulation of the motion of DW in GPR  F(x) are carried out for a model in which the cross section of 

CGCMNW is conventionally divided into some segments (Fig. 4). Let us perform a micromagnetic 

foundation of the proposed approach to the dynamics of  DW.  

 Let us write the dimensions and energies of DW estimated for every segment (the residual stresses in 

these segments are calculated in appendix 1).  

According to the model [5, 6] the process of the DW motion begins from the central region inside the 

cylinder within area 3 (Fig. 4). There appears a reversal magnetic center.  
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Fig. 4.  Cross section of the CGCMNW microwire:  Rc is the external radius of the glass envelope, rm is 

the radius of the metal strand, b is the radius of the plastic deformation boundary.  

This very center is an initial region described in (2); its micromagnetic characteristics are calculated as 

follows:       

    (1) In the model of CGCMNW [5, 6] it is energetically more useful for DW to originate in the region 

with   r<b (b ~ 10--6 m is the radius of plastic deformations (see [5] and Fig. 4)) where the anisotropy 

energy is smaller. Let us estimate the order of magnitude of the DW dimensions Δi, that for example 

determine the dimensions ci. The formula for the exchange interaction energy has a standard form [5, 9], 

which is the same for all segments (see  appendix 2): 

                                   ,A

i

A
W 


                                                    (3) 

where A ~ 10--11 J/m is the exchange energy constant,  i = 1...3 is the index that characterizes the position 

of DW in the scheme of the CGCMNW cross section. In the case of the known model in the Landau–

Lifshitz theory  (LL) the anisotropy energy can be presented in the following form: 

                                
( )

λσ ,LLa LL
W                                                      (3a) 

where  λ ~ 10ˉ 6  is the magnetostriction, and  σ  is for the residual stresses (here the average value of 

them). Minimization of these competing energies is known to give a classic result of the LL theory for the 

dimensions of the DW and its energy [5, 9]:  
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                     (3b)    

If, for the anisotropy energy, one uses the dependence on Δ3 (the subscript  3 means the position of DW) 

in the center of the CGCMNW metal strand, which is prescribed by the real form of the residual stresses 

(see appendix 1 and [5, 6]): 

                                       3
3 λ ln ,aW Kb

b

 
   

 
                            (4) 

http://www.ijesti.com/


Vol 2, Issue 10, October 2022                                                                                E-ISSN: 2582-9734 

International Journal of Engineering, Science, Technology and Innovation (IJESTI)                                                               
 

 

    IJESTI 2 (10)                                           www.ijesti.com                                                                            7 
   

where K ~ 108 Pa is the constant of the plastic deformation stresses, then the minimization of the total 

leads to a simple expression received previously (see [5, 6]: 

                                             7

3 10 m. 
λ

A

Kb

−                          (4a) 

The value of the DW dimensions is an order of magnitude less than the characteristic diameter of 

CGCMNW. This is important for adjustment of the model as the dimensions of the DW could not be more 

than the diameter of the microwire strand (being the case in LL theory). We obtain the value of the energy 

density of the considered DW as follows: 

                                   ( ) 5

3

2

3 1 /0 .W
b

m
A

J−                             (5) 

According to formula (5) the field of the start does not depend on anisotropy but is governed by the process 

parameter b which determines the order of magnitude of the polynomial coefficients in SF. By formulas 

(4) and (5) it is also possible to estimate the dimension of the nucleation center of a cylinder domain wall 

that is generated I other amorphous materials as well. It follows that the energy estimations of domain 

nucleation can differ markedly from the estimations in the LL theory towards smaller energies as 

necessary the magnetic reversal centers to generate; this was observed experimentally. If we go back to 

formula (2), the initial segment is defined by the first function; this corresponds to a harmonic oscillation 

or damped motion with no oscillation. In fact, it is the damped form of motion in the case of DW [2--4, 

9]. Thus, the motion point is not very important within the proposed model.  

Note that formulas (3) –  (5) are applicable to any magnetic materials in which magnetic nucleation centers 

appear at the particular types of dislocations. More on the energy of anisotropy associated with 

dislocations is in [9] (p. 48). This anisotropy energy: 

λ ln ,d
d d d

d

W K b
b

 
   

 

                               (5a) 

where bd is the dislocation size, Kd ~ K.    

2) Let us consider the case which is possible due to the peculiarity of the dependence of residual stresses 

on the radial coordinate of the wire. This very case describes the motion of the DW in the center of the 

microwire (in the middle of segment 2 in Fig. 4). Let us prescribe the anisotropy energy in the following 

form (according to [5] and appendix 1): 
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and the quantity n is defined below. For the value of DW and the DW specific energy we obtain:  
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                         (7) 

Formulas (7) for a particular case (n = 1) is the same as for the LL theory when the domain wall and the 

domain wall energy is known to be determined by the geometric mean of two characteristic dimensions 

associated with the exchange interaction and anisotropy. On physical grounds n > 0 for this formula, 

otherwise there is no DW.  

Please note that it is the simulation of the relaxation pulse in the previous and this region which is the 

bottle neck for the function F(x). At that, the acceleration mechanism of the DW motion (Fig. 1) is 

simulated better than that of the relaxation mechanism even if we assume that the initial rate of the DW 

is zero. Thus, this is the reason to suggest that there is some accelerated motion of DW in the case of the 

relaxation process (the first segment of motion in formula (2)).  

3) Let us consider the case when DW achieves the region close to the silicate glass junction, i. e. the 

reversal process is over (the end of segment 2 at the boundary with segment 1 in Fig. 4). Then, the 

anisotropy energy is constant and is defined by the quantity P determined in [5] and appendix 1. Thus, 

we assume that this very quantity P determines the constant member Fm in (2). 

The quadratic term in (2) takes into account the fact that the dimensions of the DW in motion are increased 

due to its cylinder shape. The following form of the anisotropy energy is considered: 
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                                     (8) 

where Rm (the radius of the CGCMNW strand) is introduced to keep the balance of dimensions of WA and 

Wa21. Then the size of the DW and its energy will be defined as follows: 
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                   (9) 

The start field Hc21 (corresponding to W21) is larger than the start field in the third region Hc3 

(corresponding to W3(Δ3)). The dependence of Hc21 on the radius of the microwire strand Rm and that of 

the glass envelope Rc, using for parameter P formulas (15) from appendix 1, has the following form: 
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4).Nowadays, when studying the reversal magnetization of CGCMNW it is often supposed that one can 

use a model of the DW motion which is called the “head-to-head” model [10]. 

 

Fig. 5. Example of magnetic structure which corresponds to the “head-to-head” type. 

For instance, a simplified version of such model can be considered as an extension of a spherical DW 

which is in a cylindrical amorphous magnetic matrix within the region where anisotropy differs from the 

anisotropy of the matrix.   

If, “same as previous”, the energy, corresponding to the anisotropy of DW, will change only due to the 

increase in the DW surface, we will write thus energy as a function of the DW width in the following 

form:  
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where, “same as previous”, the multiplier Rs
2 (Rs is the characteristic radius of the action of anisotropy 

close to the dimension of the domain wall) to  keep the balance of the dimensions of the quantities WA and 

W. Minimization of functional leads to the following formulas for the dimension of DW and its energy: 
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                                     (12) 

The DW dimension is here similar to the dimension of the domain in the LL theory with a characteristic 

“sample length”, in this case the quantity Rs plays its role, i. e. the region where the anisotropy of the 

spherical inclusion considerably differs from the anisotropy of the matrix. The energy of DW is 

proportional to the geometric mean of the DW energy in the LL model and the exchange energy, but at 
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the same time it is inversely proportional to (Rs) 
1/2. You might as well speak about the “rigidity” of these 

domains which are not easily suppressed by a field opposite to the anisotropy field of the spherical 

inclusion. The existence of such domains in CGCMNW, the reversal magnetization of which can 

considerably change the loop rectangularity, has not been observed experimentally.    

Please note that results 2) and 4) are presented here for the first time and have never been discussed so 

far.  

Modified Mathematical Model of the Motion of the Domain Wall 

Numerical calculations using function (2) and the parameters of the CGCMNW DW are not in conformity 

with a number of experimental results and the presented theoretical micromagnetic model. It is suggested 

to create another phenomenological model of the motion of DW when some considerable differences of 

CGCMNW from the used specially deformed samples of vicalloy alloy wires will be taken into account 

[2--4]. It was shown in [7] and confirmed in the present work that approximation of F(x) in the form of 

(2) and (2a) is not sufficient for an adequate simulation. Another approximation of GPR for SF is proposed 

in [8] which seems to be most adequate and convenient in order to treat physical phenomena in 

CGCMNW. SF makes up two potential wells separated by an energy barrier. Note that in [8] there only a 

particular case of symmetric wells hardly realizable in CGCMNW is considered. Let us present SF in a 

general form:  
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                     (13)   

Using a gradient SF function with two minimums it is possible to examine this bistable system for the 

case of the existence of a stochastic resonance with quasi-static reversal magnetization of CGCMNW. As 

strongly damped motions are studied when the DW mass is small enough in comparison with the effect 

on DW of the friction force, instead of dynamic equation (1) let us consider as first approximation an 

equation in which acceleration is omitted for simplicity: 

                       ( ) ( ) ( ) ( )3β 2 sin ,Sx F x M SH t A t g t+ = + +                          (14) 

where A sin(t)  is the monochromatic force that initiates the transition from one state to another, g(t) is 

the stochastic force that appears due to the magnetic noise field. This allows simpler integration of the 

equation motion of DW. The amplitudes of the determinate forces are suggested to be small enough. A 

barrier jump between two minima is, in particular, performed owing to the stochastic force. We need to 

find the process rate that determines the amplitude of the signal. It is also important to estimate the 

signal/noise relation.   
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Fig. 6. Typical form of function F(x) . 

 

 

 

 

Fig. 6a. Form of function F(x), which approximates SF, depending on the values of its parameters Fm1, 

Fm2 and ci, ck. (In [8] this function had a symmetric form).   

 

The preliminary results of numerical calculations present a qualitative picture of the outlet increase in the 

signal/noise relation at certain correlations of the monochromatic force frequency and the gradient 

function parameters. The range of these frequencies is in the region of 10 KHz that is of some interest in 

order to improve the operation of miniature sensors of a magnetic field from CGCMNW. A more detailed 

comparison with the experiment will be made in some other paper.   
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.  

Fig. 6b.. Example of calculation of forms of movement DW under formulas (13) 
 

Conclusions 

1) We have analyzed the possibility of using the Döring equation applying the fields of forces 

described by GPR with the help of SF proposed in previous works [2–7]. Those SFs, depending 

on the value of their parameters, can describe the relaxation and acceleration forms of the DW 

motion.  However, to present a number of effects and to compare them with micromagnetic 

calculations the proposed form of SF should be modified; this has been performed in the closing 

paragraph of this paper.    

2) The model of the phenomenological equation of the DW motion has been compared with the 

micromagnetic calculations. Thus, the can be substantiated the micromagnetic structure of 

CGCMNW and the form of SFs which are used to study the DW dynamics.  

3) The proposed version of GPR for SF makes it possible to study if the stochastic resonance can 

exist for this system. An opportunity to observe experimentally the stochastic resonance for the 

phenomenon of the reversal magnetization of CGCMNW is of great theoretical and practical 

importance. At present, there exist a rather limited number of systems in which stochastic 

resonance is present.  

4) The proposed theory differs radically from the existing theories of DW dynamics [11–13] which 

are applicable to amorphous ribbons or films but do not take into account the specific nature of 

CGCMNW. In our opinion, this fact determines the scientific importance of this work, which 

includes the previous results and new presentations. Note, that for amorphous wires produced by 

other technologies (see, for example. [14]) other analytic models of the DW dynamics are 

necessary.   
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Appendix 1 

Let us formulate equations for residual stresses in CGCMNW on the base of a simple model for cooling 

of a cylinder and a cylindrical surface with different thermal expansion coefficients but no thermoplastic 

relaxation during cooling. This model (which may be called the Poritzky--Hull--Burger model [15]) is 

widely used to calculate stresses which appear in macroscopic glass-to-metal seals.  

 

For radial (σr(0)), , tangential (σφ(0)) and axial (σz(0)) stress components there have been previously obtained 

the following formulas (see, for instance, [5]): 
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где Ei – модули Юнга (металла (i = 1) и стекла          (i = 2)).       

 

where m = E1,  = (1 – 2)(T
* – T)  510-3, αi is the thermal expansion coefficients (TEC) of metal (i 

= 1) and glass (i = 2); T* is the composite chilling point within the metal--glass contact area (T* ~ 103 K);  

T  is the temperature of the experiment;  Rm  is the radius of the microwire metal strand;  Rс  is the outer 

radius of the microwire glass envelope; 

2

1

0, 4 0,5,
E

k
E

=    

where Ei are the Young's moduli of metal (i = 1) and glass (i = 2).  

 

The longitudinal stress is the highest, thus the longitudinal magnetic structure is confirmed, that is:  

σz(0) ≈ (2–3)P, σz(0) > σr,φ(0), 
 

and the maximum of   P  is determined as the following:  

P → 0,5σm ≈ 109 Pa. 
 

As the analyzed model suggests a simultaneous shilling of the metal rod and glass envelope, it is 

reasonable to use formulas (15) as an initial approximation (naturally, with allowance for all the 

drawbacks of this approach). The voltages, calculated in (15), will be considered to work on the surface 

of the CGCMNW metal strand (at any rate, in the order of magnitude).  
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More complicated and more adequate model of calculation of residual stresses on the surface of a metal 

strand was considered in [16]. There the influence of an oxide layer was taken into account that appears 

between the internal surface of the silicate glass and the external surface of the metal strand (see the dot-

and-dash line in Fig. 7). A general solution of this problem can be only numerical. However, the correction 

to the estimations of the residual stresses (see for further detail [16]) leave the main qualitative results 

which follow from (15) unchanged.  

 

It should be pointed out that in order to calculate a  domain  structure for  CGCMNW one should take into 

account the relaxation processes in the microwire strand which lead to the dependences in σr and σφ of the 

r - coordinate of the cylinder. Let us initially consider a simple variant of this theory of calculation of 

stresses using the theory of elasticity, first disregarding the plastic relaxation range and then with regard 

to the plastic relaxation [5]. For a long cylinder, it is sufficient to introduce the radial deformation which 

obeys the following equation (the Lamè problem, see [5, 17--19]): 

 

                                       
2

1 1
0.u u u

r r
 + − =                                 (16) 

Equation (16) enables us to solve a problem on deformation of an infinite cylindrical figures with the 

internal radius 1r and the external radius 2r . Let pressures P1 and P2 operate on the cylindrical surface of 

this figure. The solution of this problem for residual stresses in each envelope can be presented in the 

following form [5, 17--19]:  

 
 

                            

1
1 2

1
1 2

,

,

r

c
P

r

c
P

r


 = −

 = +

                                         (17) 

where quantities 1P  and c1 are determined from the boundary conditions for stresses. In our case: 

 

                              

2 2

2 2 1 1
1 2 2

2 1

2 22 1
1 2 12 2

2 1

,

.

P r Pr
P

r r

P P
c r r

r r

−
=

−

−
=

−

                                 (18) 

It is assumed that the stresses (that is the pressures which are applied to the cylindrical surface) are (in the 

case of CGCMNW) tensile being of importance in choosing a sign. In (17) and (18) the presented 

quantities are positive, if 

P2  P1. 

This is the case in CGCMNW.  It follows thence an important relation: 

                                  r  .                              (19) 
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Presenting a microwire strand in the form of coaxial cylindrical surfaces and prescribing external 

boundary conditions, one can construct recurrent relations which allow numerical calculation of the 

residual stresses. The conditions of peak stresses on the strand surface which can be estimated from (15), 

are assumed the boundary conditions. It follows from the numerical calculations that the residual stresses 

for CGCMNW in next layers decrease (in absolute magnitude) remaining tensile. Analytical dependences 

of the residual stresses on the cylinder radius coordinate are important for calculation of the DW width. 

They are presented (according to [17--19]) in the following form: 

                       

( )

( )

2

1

2

φ 1

σ 1 ,

σ 1 ,

r

b
P

r

b
P

r

  
 −  

   

  
 +  

   

                   (20) 

where b is the minimum limiting value of the radius 1r  inside the metal strand when the plastic relaxation 

is negligible. The parameter b is a phenomenological parameter that should be estimated from 

experimental data. Unlike (15), residual stresses (17) and (20) take account of the fact that some relaxation 

processes take place in the center of the microwire. Assuming that the range with the boundaries from 

1r b to the external radius 2 mr R is the region of elastic stresses, then it is simple to obtain from (17)--

(20) the following equilibrium equation [17--19]: 

 

 

                     
σ

σ .r
r

d
r

dr


 
=  − 

 
                               (21) 

What is more, there is fulfilled the relation, following from Hooke's law, that the sum of radial and 

tangential stresses at the prescribed radius of the cylindrical surface is constant:   

φσ σ 2 .r P+ =                                (22) 
Let us evaluate the stress σz(1)  from the known components of σr,φ (1): 

 

( )1
σ 2 .

z
P                                  (23) 

For zero problems (the case of formula (15)) it is fulfilled that: 

( ) ( )0 φ 0
σ σ .

r
P= =                          (24) 

In order to bind the solution to (15) more accurately, one can add the constant stresses ( )
0

,φ, 1
σ

r z
to the general 

solution. 

Then (17) and (20) can be rewritten in the following form: 
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( ) ( )

( ) ( )
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σ 1 σ ,
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 
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 

 + +

= 

           (25) 

if  ν → 0,5  (and  b ≤ Rm/2).  

Please note that the analytic extrapolation of numerical calculation has the form: 

( ) 12 1212
σ ,

n

r

r
A B

b

 
 −  

 
                       (26) 

where    - 1 < n < 2 .  

Elastic relaxations within the r b  zone can be taken into account, using the Airy function Ф(r) (see in 

more detail in [5, 17--19]), which in our case allows the calculation of the residual stresses with regard 

for plastic relaxation. We restrict ourselves to a centrally symmetrical case when the Airy function 

depends only on the radial coordinate. In this case the formula Ф(r) of the bind with the residual stresses 

considerably simplifies [5, 17--19] to:    

   

     

φ

1
σ ,

σ .

r r

r

r

 
=  

 

= 

                           (27) 

For convenience in integration, a standard conversion of transfer to the variable t (see [5, 17--19]) is 

performed according to the following formula: 

t = ln{r},                                   (28) 
and after conversion the equation for the function Ф(t) has a simple form [5]: 

4 4 0,t t t
   −  +  =                      (29) 

where the primes mark the differentiation performed with respect to the variable t. Then the general 

solutions for all the residual stresses can be present as [5, 17--19]: 

                   

( )

1
1 2

1
φ 1 2

σ 2 ln ,

σ 2 1 ln ,

r

c
P k r

r

c
P k r

r

= − +

= + + +

                         (30) 

where 
1,P  c1,  k  are the parameters bound with the boundary conditions and material constants. The initial 

two members of the presented general solution correspond to the functions that were previously used in 

(25). They describe only the mechanism of elastic stresses at the simplest approximation. The stresses, 

which appear in the region when r < b, are assumed to be “plastic”, as at quenching of amorphous 

materials plastic relaxation is possible.  
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Formulas (30) fully describe the formulated problem up to the radius b within the whole elastic region 

[18, pp. 112--113]. In the same manner, in the context of the theory of plastic stresses the solution region 

can be increased from the radius b to the dimensions where the validity criteria for the continuity model 

are violated (see the shaded area near zero in Fig. 7).    

Let us analyze the additions to stresses in the “plastic” region (r < b) in the form which correlates with 

more detailed theory [19] (the Poisson ratio ν being ½ according to [17--19]). The analytic form of 

solution (30) sufficient for calculation of magnetic structure is known in the theory of plastic relaxation 

as the solution which makes allowance for the Tresca yield conditions (see [18, 19]). Let us present these 

functions in the following form: 
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( )

( ) ( ) ( )( )

2

φ 2

2 ρ 2 φ 2

σ 2 ln ,

σ 2 1 ln ,

σ σ σ 2 1 2ln .

r

z
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r
K

b

r
K

b


 
=   

 

  
=  +   

  

  
  +   +   

  

                       (31) 

Please note that one can add to formulas (30) and (31) some functions, weakly dependent on the variable 

with respect to radius [19], with no considerable contribution in our case of calculation of domain 

structure. Estimations of K and b based on experiment and physical grounds (see [5]) are as follows: the 

upper bound b ≤ Rm/2 and lower bound  K ~ 0,1P. 

 

We are suggested a model in which the residual stresses σr and σz  (for brevity sake denoted as σr,z) in the 

CGCMNW strand monotonically decrease towards the strand center (see  Fig. 7). This model differs from, 

say, the models in [20, 21] in boundary conditions that leads to qualitatively distinct behavior of the 

residual stresses (Fig. 7, curve ). In [20, 21] the residual stresses σr,z monotonically decrease to the strand-

-glass boundary, being not supported physically.   

 

In the case of our model the decrease of σr,z towards the center is caused by relaxation of stresses in the 

CGCMNW center. These plastic relaxations of elastic stresses can be explained by the fact that in the 

course of the strand cooling the temperature gradient between the center and periphery is hundreds 

degrees. The microwire surface is bounded with glass through a chemical energy bond that supersedes 

the energy of the residual stresses at the onset of the CGCMNW production. Only elastic relaxation of 

stresses mainly takes place till the internal radius b. The stresses which occur in the microwire region 

close to the strand center (r < b) is assumed “plastic”, as at quenching of amorphous materials there can 

arise plastic relaxation. For illustrative purposes, there are presented some patterns of stresses in the 

amorphous strand and silicate glass (Fig. 7). Radial residual stresses are of interest for the domain model 

under consideration. All the residual stresses in the microwire strand are tensile (positive). The negative 

addition σr(2), connected with relaxation (formulas (31)), is less than the positive (tensile) stress already 

existing in the metal strand (with respect to formulas (15) and (20)). For those r << b, where this addition 

becomes more than already existing residual stresses, the domain of applicability of our model is most 

likely violated. This region is “cut off” from our consideration (shaded area round zero in Fig. 7).  
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In the glass envelope the residual stresses are compressive (Fig. 7). According to the condition of 

equilibrium on the strand--glass surface, when the strand is extended, the glass is compressed. We also 

assume that after the glass envelope is taken away (or damaged) the radial stresses inside the strand can 

become compressive (say, in the inner area of the strand that is marked in Fig. 7 by the dashed line β). It 

becomes possible to determine more accurately the physical meaning of the parameter b. 

 

 

 

 

Fig. 7a. Qualitative pattern of the change of residual stresses r,z along the microwire radius. Curve α 

presents the initial state of these stresses in the metal strand and glass (in glass it is shown by black color 

and dashed line). In the metal strand these stresses are always tensile, i. e. positive. The residual stresses 

in the silicate glass always compress the glass envelope (i. e. they are negative). Inside the region of plastic 

relaxation there is shown a section (near the strand center) where the applicability of the continuum model 

is violated. Curve  is a hypothetic form of residual stresses in the metal strand after etch removal of the 

glass envelope or disruption of its bound with the metal strand.  As an example, there are presented the 

qualitative results of the calculation of residual stresses according to [20, 21] (curve  , which are different 

from our data.       

 

Fig. 7b. Results of calculations of dependences of distribution of pressure σ r  and σφ on microwire radius 

under formulas (25), (30), (31) are presented.  
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 (At calculations it was accepted, that b=0.25r, k=0.4 and R/r=1.25. In the same drawing zero approach 

for calculationσ z  (the formula (15)) is resulted). 

 

 

In conclusion we note the Poritzky--Hull--Burger model used here as a boundary condition to calculate 

residual stresses in CGCMNW is not the only possible. For instance, another pattern of calculation is 

proposed in [22]. Their obtained result differs from formulas (15). However, formulas (15) adequately 

explain the experiments concerning FMR and EFMR [23, 24], being inconsistent with the data in [22].         

 

Appendix 2 

An exchange energy member in the form of formula (3) is used with the aim to calculate the DW 

dimensions. The same formula is applied, say, in works [9, 25, 26], where the authors also considered the 

method of its derivation. As this formula is important we present the detailed derivation of it hereinafter.    

Two nearest spins in a ferromagnetic, oriented at a slight angle relative to each other, increase the 

exchange interaction energy by 

                 ( )2cosφ 1 φ / 2 .AW  −  − −                 (32) 

For the sake of simplicity, let us omit the interaction constant, that is proportional to the quantity A, as we 

are interested only in a functional dependence of this energy on the DW dimension, i. e. on δ. Hereafter 

we will make allowance only for an increment in the energy which makes its contribution at the variation 

of energy in order to find δ. For this reason the constants in (32) will be omitted. 

The angle between vectors is proportional to the distance between spins a and  the angle gradient. The 

average angle gradient is proportional to the angle-shift value which should be also divided by the DW 

dimension δ.  

Thus, there is obtained the following intermediate quantity that is proportional to the quantity (a2/2δ2). 

With the aim to calculate the final result, it is necessary to multiply the sought quantity ~ (a2/2δ2) by the 

number of rotation layers within the interval equal to the DW thickness, that is by the value equal to 

π(δ/a).  

Finally, we obtain formula (3) with the omitted multiplier π/2 as not influencing the accuracy of the 

calculation.  

The presented considerations are meaningful, if the dimensions of the DW are much more than the 

quantity a. In this case we pass to the continuity approximation in which a rapid rotation of two nearest 

spins by an angle of  ~ π] is changed by a slow turn of the spin system which takes place over the length, 

equal to the DW dimension δ.    
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