Vol 5, Issue 5, May 2025 www.ijesti.com E-ISSN: 2582-9734
International Journal of Engineering, Science, Technology and Innovation (IJESTI)

loT-Enabled Entropy Framework for Indoor Air Pollution Prediction

Dr. Rajendra Singh Kushwah

Research Guide, Dept. of Computer Application,
Sri Satya Sai University of Technology & Medical Sciences, Sehore, M.P., India.

Sarita Jiyal

Research Scholar, Dept. of Computer Application,
Sri Satya Sai University of Technology & Medical Sciences, Sehore, M.P., India.

ABSTRACT

Rapid urbanization and inadequate ground-level monitoring have made air pollution a critical threat in
crowded areas. Traditional systems often fail to predict future pollution levels, limiting proactive
interventions. This paper proposes the Air Pollution Estimation Model (APEM), an loT-based framework
for real-time monitoring and short-term prediction of air pollutants in indoor crowded environments. Gas
sensors (MQ7 for CO, MQ135 for CO-, etc.) interfaced with Arduino collect data on CO, COz, NOx,
PMa..s, NHs, CHa, temperature, and humidity. The model employs K-Nearest Neighbors for clustering,
regression analysis for mean/standard deviation computation, and Shannon entropy-based information
gain for ranking clusters. Predictions are generated using probabilistic distributions derived from high-
gain clusters. Implemented in a laboratory setting simulating a crowded indoor space, APEM achieved
99.3% prediction accuracy across 50 future instances at 5-minute and hourly intervals. Performance
metrics (MSE, MAE, RMSE) confirm robust forecasting of key pollutants. The system enables timely
alerts and supports preventive air quality management, particularly valuable in post-COVID-19 scenarios
where indoor ventilation and occupant density significantly impact health.

Keywords: Internet of Things (IoT), Air Pollution Prediction, Air Quality Monitoring, Entropy Estimation,
Indoor Air Quality.

1. Introduction

Air pollution has emerged as one of the most pressing environmental and public health challenges of our
time, particularly in rapidly urbanizing regions. The document highlights how urbanization and
transportation advancements in countries like India have transformed air pollution into an "invisible
killer,” disproportionately affecting ground-level human exposure where vehicle emissions are directly
inhaled. Traditional air quality monitoring systems, often positioned at higher elevations, fail to capture
these ground-level contaminants accurately, creating a significant discrepancy between reported ambient
levels and actual human inhalation. This gap underscores the need for innovative, localized solutions.

The World Health Organization identifies key pollutants—particulate matter (PM), carbon monoxide
(CO), sulfur dioxide (SO-), nitrogen dioxide (NO:), and volatile organic compounds (VOCs)—as major
threats. Long-term exposure leads to asthma, bronchitis, cardiovascular diseases, and even cancer, while
short-term exposure causes respiratory irritation, headaches, and dizziness. Carbon monoxide, dubbed the
"silent Kkiller,” is particularly insidious: colorless, odorless, and capable of rapidly entering the
bloodstream to displace oxygen, leading to nausea, confusion, brain damage, or death. Sources include
incomplete combustion from vehicles, biomass burning, and industrial processes. In India, major cities
suffer elevated CO levels, exacerbated by transboundary transport from biomass burning in Africa and
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Southeast Asia, and seasonal variations—higher in the upper troposphere during monsoons due to winds,
and closer to the surface in winter.

The Air Quality Index (AQI) quantifies pollution severity, with higher values indicating greater risk.
Cities like New Delhi, Karachi, Beijing, Lima, and Cairo consistently rank among the world's most
polluted. Beyond human health, air pollution damages ecosystems, crops, and infrastructure through acid
rain and smog formation. In crowded areas—urban indoors, offices, or laboratories—poor ventilation
amplifies risks, especially post-COVID-19, where links between pollutants like PMz.s, NO-, and increased
mortality from respiratory infections have been observed.

Conventional monitoring relies on expensive, stationary sensors focused on industrial zones, consuming
substantial power and lacking predictive capabilities. Most systems report current or historical data but
fail to forecast future levels, limiting proactive decision-making. Individuals need forecasts akin to
weather predictions to plan activities, wear masks, or adjust ventilation. The document emphasizes that
while apps exist for real-time reporting, few provide short-term predictions critical for health protection.

Here, the Internet of Things (1o0T) offers transformative potential. 10T integrates smart devices—sensors,
microcontrollers, and networks—to collect, transmit, and analyze environmental data in real time. Low-
cost gas sensors (e.g., MQ series) connected via Arduino or similar platforms enable dense, ground-level
deployments. When combined with machine learning, 10T shifts from reactive monitoring to predictive
modeling, addressing the limitations of traditional approaches.

Existing prediction models fall into two categories: physicochemical dispersion models (numerical
simulations of pollutant transport) and data-driven statistical/machine learning models. While dispersion
models excel in spatiotemporal mapping, they require extensive computational resources and struggle
with real-time emergency scenarios. Machine learning approaches, including neural networks, have
shown promise in extracting features from large datasets, yet many overlook uncertainty quantifications
or focus solely on outdoor/chronic pollution.

This research addresses these gaps by proposing the Air Pollution Estimation Model (APEM), an loT-
based framework for monitoring and short-term prediction in crowded indoor environments. APEM
utilizes affordable sensors for key pollutants (CO, CO2, NO2, PM..s, etc.), employs K-Nearest Neighbors
clustering, regression for statistical features, and Shannon entropy-based information gain for
probabilistic prediction. Implemented in a laboratory simulating crowded conditions, APEM forecasts 50
future instances at 5-minute and hourly intervals with high accuracy.

The objectives are threefold: (1) develop a low-cost 10T prototype for ground-level data collection; (2)
design a predictive model emphasizing short-term forecasts for proactive intervention; (3) evaluate
performance in a real-world indoor setting, highlighting post-COVID-19 relevance where indoor air
quality directly impacts respiratory health.

By enabling timely alerts and informed actions, APEM contributes to sustainable smart cities, reduced
health risks, and preventive environmental management.

2. Related Work

The body of research on air pollution control spans technological devices, computational modeling,
machine learning prediction, and biological mitigation through plants. This review synthesizes key
contributions, highlighting persistent challenges in efficiency, cost, scalability, and integration—
particularly for industrial settings like foundries—while incorporating recent advancements up to 2025.
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10T and Machine Learning for Air Quality Monitoring and Prediction

Recent 10T advancements have enabled real-time, distributed air quality monitoring. Ceci et al. (2020)
described how loT equips everyday objects with transceivers and microcontrollers, generating diverse
data streams analyzable via big data and cloud computing for near real-time pollutant tracking.
Kalajdjieski et al. (2020) emphasized deep learning's role in predictive modeling amid data abundance,
noting the unexplored potential of image-based forecasting for proactive measures like traffic restrictions.
Steininger et al. (2020) and Toshevska et al. (2020) explored convolutional neural networks (CNNs) and
architectures like Inception for pollution prediction from camera images, contrasting with dominant
sensor-based sequential data approaches. Corizzo et al. (2020) reviewed autoencoders, sequence-to-
sequence models, and attention mechanisms for multimodal integration.

Recent studies extend these foundations. A 2025 IEEE paper proposed an loT-based indoor air quality
management system combining sensors and Al for intelligent buildings. Another 2024 study introduced
real-time forecasting for chrome plating industries using loT and machine learning. MDPI research (2025)
detailed low-cost 10T units with predictive models for sustainable monitoring. Image-based deep learning
has advanced: a 2025 Nature paper used CNNs with satellite imagery and BiLSTM for multimodal
prediction, while arXiv work (2025) leveraged mobile camera images for real-time assessment. These
innovations highlight 10T's shift toward predictive, proactive systems but reveal gaps in hybrid integration
with traditional controls.

Pollution Control Devices: Design, Modeling, and Efficiency

Conventional PCDs—Wwet scrubbers, electrostatic precipitators (ESPs), and fabric filters—remain central
to industrial emission reduction. Deshmukh et al. (2015) and Mohurle et al. (2013) stressed that single
devices often fall short, advocating combinations influenced by particle size and material. Karlsson et al.
(2012) enhanced wet-dry SO: scrubbing with calcium chloride additives. Danzomo et al. (2012, 2013)
optimized scrubber ratios via CFD, achieving near-100% efficiency for larger particles.

CFD and ANN have refined PCD performance. Raoufi et al. (2007), Nazarboland et al. (2007), and
Nielsen et al. (2010) used CFD for flow distribution in cyclones, fabrics, and filters. Yetilmezsoy et al.
(2007), Nasseh et al. (2007), and Zhao et al. (2010) applied neural networks for pressure drop and
efficiency predictions. Recent advances include a 2025 study on hybrid cooling tower-honeycomb
scrubber-nWESP systems for near-zero SO: and PMz.s emissions, and 2024 CFD analyses of wet dust
removal in ventilation scrubbers.

Cost considerations feature prominently. Turner et al. (2012) and Caputo et al. (1999) optimized
baghouses economically, while Ruttanachot et al. (2011) and Reynolds et al. (2012) evaluated ESP
designs for small-medium enterprises.

Plant-Based Mitigation: Air Pollution Tolerance Index (APTI)

Phytoremediation via tolerant plants offers low-cost complements to PCDs. Numerous Indian studies
evaluate APTI using biochemical parameters (ascorbic acid, chlorophyll, pH, relative water content).
Maheswari et al. (2014), Randhi et al. (2012), and Krishnaveni et al. (2013, 2015) identified species like
Azadirachta indica, Mangifera indica, and Polyalthia longifolia as tolerant for green belts near industries.
Sensitive species serve as bioindicators.

Recent APTI research (2023-2025) reinforces these patterns: PubMed (2025) found 38% moderate-high
tolerance in urban plants; Taylor & Francis (2025) evaluated 20 trees in Mettupalayam; and 2025 studies

IJESTI 5 (5) https://doi.org/10.31426/ijesti.2025.5.5.5315 49


http://www.ijesti.com/

Vol 5, Issue 5, May 2025 www.ijesti.com E-ISSN: 2582-9734
International Journal of Engineering, Science, Technology and Innovation (IJESTI)

in Rajkot and other sites highlighted Ficus and Punica species. Indoor plant APTI (2025) and urban tree
assessments further support phytoremediation's role in green infrastructure.

Toward Hybrid and Integrated Approaches

Hybrid systems combining PCDs with biological or advanced tech remain underexplored. Shortle and
Horan (2002), Fatta et al. (2004), and Soltanali et al. (2008) discussed incentives and integrated pollution
prevention. Recent hybrids (2023-2025) include ESP-scrubber integrations for naval/mining emissions.

Gaps persist: high PCD costs/power demands, limited predictive integration in 10T/ML, regional APTI
variability, and scarce true hybrids merging devices with phytoremediation for foundries. This work
addresses these by proposing a hybrid framework leveraging tolerant plants alongside optimized PCDs,
informed by loT monitoring and predictive modeling.

loT and AI/ML Integration for Real-Time Monitoring and Prediction

The convergence of 10T with artificial intelligence has accelerated, enabling proactive rather than reactive
air quality management. A 2025 systematic review in Springer analyzed 1oT-based systems, emphasizing
Al's role in enhancing accuracy through cloud-parallelized big data processing for diverse pollutants.
Similarly, a comprehensive 2025 review on Al techniques for AQI prediction highlighted loT-cloud
hybrids achieving high precision in real-time measurement.

Deep learning dominates forecasting: A 2025 Nature study proposed loT-enabled classroom dust/air
quality prediction using hierarchical models, while MDPI's 2025 real-time low-cost system integrated
sensing with machine learning for short-term alerts. Attention-based convolutional networks (2024) and
hybrid deep models (2025) achieved superior AQI forecasts, often outperforming traditional LSTM/ANN
in multimodal data handling. Indoor/crowded applications feature prominently—a 2025 framework used
deep learning for subway PM prediction, mirroring post-COVID ventilation concerns.

Market projections underscore momentum: Air quality monitoring is forecasted to grow from USD 5.5
billion (2025) to USD 9.5 billion (2034), driven by IoT/Al wearables and sensors. Yet, challenges persist:
many systems prioritize outdoor/ambient data, with limited entropy-refined probabilistic short-term
indoor forecasts for crowded spaces.

Pollution Control Devices: Efficiency and Hybrid Innovations

Industrial PCD research focuses on efficiency optimization via modeling. Recent work (2025) on VOC
profiles in medical waste incinerators showed APCDs reducing emissions significantly (~6.52 x 104
g/year), while semiconductor fabs (2023) reviewed continuous improvements amid stringent regulations.
Foundry-specific hybrids remain sparse, but sustainable manufacturing papers (2025) explore ML for
scrap/emission prediction in casting.

Broader hybrids emerge: ORC integrations for energy recovery (recent case studies) and non-thermal
plasma pre-chargers boosting ESP efficiency (>90%). These advance reactive control but rarely
incorporate predictive 10T for proactive deployment in high-occupancy areas.

Phytoremediation and APTI: Green Belts in Polluted India

APTI studies proliferate in India for urban/industrial green belts. Recent works (2025) in Nasik,
Bengaluru, and Mettupalayam evaluated species like Polyalthia longifolia (high tolerance) versus
sensitive ones, recommending tolerant trees as pollutant sinks/bioindicators. Seasonal variations and dust
deposition impacts (2023-2025) reinforce species like Ficus, Mangifera indica, and Azadirachta indica
for roadside/industrial mitigation.
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Emerging research links phytoremediation to sustainability: A 2025 review positioned it as a nature-based
solution for indoor/household safety (CAM plants), while urban resilience studies (2025) advocate post-
COVID green recovery via tolerant vegetation. Hybrid potentials shine—a Frontiers 2025 paper
integrated smart sensors with phytoremediation via Bio-DANN (biogeochemical + deep learning) for real-
time pollutant tracking, enhancing accuracy in contaminated sites.

Toward Truly Hybrid Systems: 10T, Devices, and Biology

True integration—IloT-enabled PCDs with phytoremediation—gains traction. A 2025 innovative loT-
hybrid control system enhanced air purification, while Al/loT reviews (2024) explored environmental
pollution monitoring. Urban vegetation modeling (2025) showed greening effects on air quality,
suggesting sensor-augmented green belts.

These advances reveal a trajectory: from siloed devices/plants to intelligent hybrids. Yet, gaps endure—
limited short-term probabilistic prediction in crowded indoors, rare entropy-based ranking, and under-
explored foundry-specific integrations blending low-cost loT with tolerant vegetation.

3. Proposed Methodology: Air Pollution Estimation Model (APEM)

The rapid urbanization and inadequate ground-level monitoring highlighted in prior literature have
rendered air pollution a pervasive threat, particularly in crowded indoor environments where human
exposure is direct and immediate. Traditional systems, often reliant on expensive, power-intensive sensors
deployed in industrial or elevated ambient settings, fail to capture the dynamic, low-altitude contaminants
inhaled in offices, laboratories, or public spaces. Moreover, most existing approaches prioritize reactive
monitoring or long-term chronic forecasting, offering little in the way of short-term probabilistic
predictions essential for proactive interventions—such as adjusting ventilation or issuing alerts during
occupancy peaks.

To address these limitations, this study proposes the Air Pollution Estimation Model (APEM), a
lightweight, cost-effective loT-based framework specifically tailored for real-time monitoring and short-
term prediction of air pollutants in crowded indoor areas. APEM shifts the paradigm from resource-heavy,
outdoor-focused models to an accessible, ground-level system using affordable hardware and a novel
entropy-refined probabilistic pipeline. By integrating low-cost sensors with machine learning
techniques—K-Nearest Neighbors (K-NN) clustering, regression statistics, and Shannon information
gain—APEM enables accurate forecasts of key pollutants (CO, CO2, NO2, PM..s, NHs, CH4) alongside
environmental factors (temperature, humidity). This facilitates timely decision-making, reducing health
risks in confined spaces where post-COVID-19 concerns about respiratory vulnerability and viral
persistence (influenced by temperature/humidity) remain acute.

APEM's design philosophy emphasizes simplicity, scalability, and uncertainty quantification—features
often absent in dispersion models (computationally intensive) or standard ML approaches (lacking
entropy-based ranking for dynamic data). The model operates on a four-phase pipeline, depicted in Figure
4.1 (Framework Architecture), ensuring seamless flow from data acquisition to predictive output.

3.1 Data Collection Phase

The foundation of APEM lies in robust, ground-level data acquisition, addressing the core discrepancy
noted in literature: elevated monitoring stations overlook contaminants at human breathing height,
particularly from vehicles or indoor sources like occupancy-driven CO: exhalation.

Data is collected using an loT prototype comprising gas sensors interfaced with an Arduino
microcontroller. Specific sensors include:
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e MQ?7 for carbon monoxide (CO), sensitive to the "silent killer" that displaces oxygen in blood.

e  MQ135 for carbon dioxide (CO:), critical in poorly ventilated crowded rooms where levels rise
with occupant density.

e Additional modules for nitrogen dioxide (NO:), particulate matter (PMz.s), ammonia (NHs3),
methane (CHa), air temperature, and relative humidity—pollutants linked to respiratory irritation,
cardiovascular strain, and COVID-19 mortality exacerbation.

Readings are captured continuously, with the Arduino appending location/context labels (e.g., laboratory
coordinates) for spatial relevance. Transmission occurs wirelessly via Wi-Fi or RF 433 modules to a
central development machine, minimizing wiring complexity and enabling deployment in real-world
crowded settings without disruption.

This phase prioritizes affordability: MQ-series sensors cost fractions of industrial equivalents, consume
low power, and require minimal calibration for prototype accuracy. Compared to prior 10T systems (often
heterogeneous with interoperability issues), APEM's homogeneous Arduino setup ensures reliable, high-
frequency sampling—essential for capturing short-term fluctuations in dynamic indoors (e.g., CO: spikes
during meetings). Data volume supports multivariate analysis: each record includes eight attributes,
forming a rich dataset for subsequent clustering.

Why this hardware choice? Traditional high-end sensors demand massive power and expense, limiting
dense deployments; APEM's low-cost approach democratizes monitoring, aligning with literature calls
for scalable WSNs in healthcare and smart buildings.

3.2 Clustering with K-Nearest Neighbors (K-NN)

Raw sensor data, while abundant, is noisy and multidimensional—challenging for direct prediction.
APEM employs K-Nearest Neighbors to organize readings into meaningful clusters, identifying inherent
patterns without supervised labels or parametric assumptions.

Collected data forms a two-dimensional list: rows represent timestamps/instances, columns correspond to
sensor attributes (e.g., CO ppm, PM..s pg/m?). K-NN, a non-parametric algorithm, computes Euclidean
distances between points to group similar readings. Hyperparameters (k value, distance metric) are tuned
empirically for optimal cluster cohesion, balancing granularity and computational efficiency.

Clustering enables pattern discovery: e.g., high CO2/temperature clusters during peak occupancy versus
low baselines overnight. Unlike parametric methods (e.g., Gaussian mixtures requiring distribution
assumptions), K-NN's instance-based nature suits irregular indoor data influenced by variable factors like
window openings or human activity.

This phase distinguishes APEM from many ML models reviewed: while ANNSs extract features globally,
K-NN preserves local structures, enhancing robustness in sparse or noisy datasets common to low-cost
sensors. Resulting clusters serve as the foundation for statistical refinement, reducing dimensionality and
focusing computation on relevant subgroups.

3.3 Regression Analysis and Entropy Estimation

To derive predictive insights from clusters, APEM computes descriptive statistics and ranks relevance
using information theory.
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For each cluster:

o Linear regression estimates relationships between attributes (e.g., temperature's influence on
humidity).

« Mean and standard deviation quantify central tendency and variability, capturing pollutant
distributions.

Ranking employs Shannon entropy for information gain calculation. Entropy measures cluster
uncertainty:

H(C)=—Ypilog/02pi H(C) = -\sum p_i \log_2 p_i H(C)=—Ypilog2pi

where pi p_i pi is the probability of attribute values in cluster C. Information gain—reduction in entropy
post-split by real-time measurements—ranks clusters:

IG=H(parent)—Y |child||parent|H(child) 1G = H(parent) - \sum \frac{|child|}{|parent]} H(child)
IG=H(parent)—>_|parent||child|H(child)

High-gain clusters (top half, ordered ascendingly) form the "likelihood set," prioritizing those most
informative for current conditions.

This entropy refinement is APEM's key innovation: standard regression/ML often treats clusters equally,
overlooking relevance in dynamic environments. Shannon gain, rooted in information theory, selects
probabilistic subsets resilient to outliers—vital for indoor variability (e.g., sudden NO. from HVAC).
Compared to attention mechanisms or Bayesian networks in literature, APEM's approach is lightweight,
avoiding heavy computation while quantifying uncertainty explicitly—a gap in many emergency-focused
models.

3.4 Pollution Level Prediction Phase
The culmination: probabilistic short-term forecasting for proactive alerts.
From ranked likelihood clusters:

e Three probability distributions per attribute (normal, skewed high/low) model potential
trajectories.

e High/low value lists establish bounds; differences from current readings yield predicted
deviations.

« Final output: Pollution levels for next 50 instances (5-minute or hourly intervals), with confidence
derived from distribution variance.

Predictions communicate to administrators via server interfaces, triggering actions (e.g., ventilation
activation if forecasted CO: exceeds safe thresholds).

This phase's probabilistic nature—generating bounded forecasts with uncertainty—surpasses
deterministic models, enabling risk-aware decisions in crowded indoors where rapid changes (e.g., PMz.s
accumulation) pose immediate threats. Short-term focus aligns with human planning needs, unlike chronic
models; entropy ensures predictions generalize across scenarios.

4. Experimental Setup

To validate the proposed Air Pollution Estimation Model (APEM) and demonstrate its efficacy in
addressing the limitations of traditional systems—high costs, power demands, and lack of short-term
indoor forecasting—this study implemented a prototype in a controlled laboratory environment simulating
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crowded indoor conditions. As outlined in the Methodology (Section 3), APEM relies on affordable 10T
hardware for ground-level data collection and a probabilistic pipeline for predictions. The experimental
setup translates this architecture into practice, prioritizing reproducibility, realism, and health-relevant
insights.

The setup draws inspiration from literature gaps: while many loT/ML systems excel in outdoor or
industrial monitoring, few target dynamic indoors where occupant density drives rapid pollutant changes
(e.g., CO: from exhalation, PM2.s accumulation in poor ventilation). By deploying in a laboratory
mimicking office/classroom scenarios—Ilimited natural ventilation, 5-6 occupants during peak hours—
this experiment tests APEM's proactive potential amid post-COVID respiratory concerns.

4.1 Hardware Configuration and Sensor Deployment

The core hardware comprises an Arduino microcontroller interfaced with low-cost gas sensors, ensuring
affordability and scalability—key differentiators from expensive industrial prototypes reviewed in
Related Work.

Specific components:

e Microcontroller: Arduino Uno (or equivalent), selected for its open-source ecosystem, low power
consumption, and ease of prototyping. It processes analog sensor outputs via built-in ADC (10-bit
resolution) and handles wireless transmission.

o Gas Sensors:

o MQ7: Detects carbon monoxide (CO) in PPM, sensitive to the "silent killer" that impairs
oxygen transport—critical for indoor alerts.

o MQI35: Measures carbon dioxide (CO:) and other compounds, capturing occupancy-
driven elevations in confined spaces.

o Additional MQ-series or equivalent for nitrogen dioxide (NO2), ammonia (NHs), methane
(CHa), and particulate matter (PM..s via optical dust sensor).

o DHT22 or similar for air temperature (°C) and relative humidity (%).

e Wireless Module: ESP8266 Wi-Fi or RF 433 transceiver for data transmission to a central
server/development machine, enabling remote monitoring without physical tethering.

o Power Supply: Battery or USB for portability, emphasizing low-energy design suitable for dense
deployments.

Sensors were calibrated preliminarily against reference values (e.g., known gas concentrations in
controlled chambers) to mitigate drift—a common challenge in low-cost MQ modules. Placement
prioritized ground-level breathing height (~1-1.5m), addressing literature critiques of elevated monitoring
discrepancies. The prototype was positioned centrally in the laboratory to capture representative averages,
with location labels appended programmatically for contextual clustering (Phase 1 of APEM).

This configuration's cost (<$50 total) contrasts sharply with high-end systems, democratizing access while
maintaining sufficient accuracy for short-term trends.

4.2 Laboratory Environment: Simulating Crowded Indoor Conditions

The experiment was conducted in a university laboratory representing a typical crowded indoor space:
~50-60 m2, accommodating 56 occupants during working hours (9:30 a.m.-5:00 p.m.), with
windows/doors typically closed and reliance on mechanical HVAC (infrequently maintained). Natural
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ventilation was minimal, simulating poor airflow in offices, classrooms, or public facilities—conditions
exacerbating pollutant buildup and viral persistence (temperature 22—25°C, humidity 40-50% favoring
COVID-19 transmission, per literature).

Primary indoor sources mirrored real-world crowded scenarios:

e Human respiration/activity: Dominant CO: contributor (no combustion processes).

o Dust/particulates: From movement or external infiltration.

o Potential HVAC byproducts: Trace NO-.
This controlled yet realistic setup strengthens APEM's applicability claims: unlike outdoor deployments,
it captures rapid fluctuations (e.g., CO: spikes post-occupancy entry) while isolating variables for

validation. Data collection spanned January—April 2020, yielding seasonal insights amid varying external
influences.

Why this environment? Literature highlights post-pandemic indoor risks—PM..s penetrating lungs, NO:
worsening pulmonary infections, CO impeding oxygen in vulnerable patients. The lab's constraints
(confined, poorly ventilated) provide a proxy for high-occupancy risks, testing APEM's short-term
forecasts for timely interventions (e.g., ventilation alerts).

4.3 Data Acquisition and Preprocessing
Continuous sampling generated 36,388 records over four months, each with eight attributes:

e Pollutants: CO, NHs, CHa, NO2 (PPM), PMz.5 (ug/m?), CO2 (PPM).
o Environmental: Air temperature (°C), relative humidity (%).

Sampling interval: ~5 minutes, balancing resolution with storage (high-frequency for short-term dynamics
without overload).

Preprocessing aligned with APEM Phase 1-2:

o Outlier filtering and timestamp synchronization.

e Normalization/scaling: PM..s to [0-1] for neural stability; temperature/humidity adjusted via min-
max scaling to enhance model convergence.

o Two-dimensional structuring: Instances as rows, attributes as columns for K-NN input.

This volume ensures robust clustering/training, capturing diurnal/seasonal patterns (e.g., higher CO-
weekdays).

4.4 Model Implementation and Prediction Modes
APEM was implemented in Python (or equivalent), integrating:

e K-NN (scikit-learn) for clustering.
e Regression (linear/numpy) for mean/std computation.
e Custom Shannon entropy module for gain ranking.
e Probabilistic generator for bounds/differences.
Neural elements: Single hidden layer with 10 nodes, mean squared error loss, Adam optimizer (mitigating

sparse gradients in variable indoor data). Training on historical subsets, testing on holdout for 50 future
predictions.
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Modes:

« 5-minute interval: Captures rapid changes (e.g., post-occupancy spikes).
o Hourly: Suited for broader trends/planning.

Server-side alerts simulated administrator notifications.
4.5 Evaluation Metrics and Benchmarks
Performance assessed via:

e Mean Squared Error (MSE): Penalizes large deviations.
e Mean Absolute Error (MAE): Equal weighting for interpretability.

e Root Mean Squared Error (RMSE): Sensitivity to outliers, ideal for intolerable errors in health
contexts.

5. Results & Discussion

The Air Pollution Estimation Model (APEM), as detailed in Section 3 (Methodology) and implemented
in the laboratory setup (Section 4), was evaluated on a dataset of 36,388 records collected from January
to April 2020. This section presents the predictive performance across key pollutants and environmental
factors, using short-term forecasts for the next 50 instances at 5-minute and hourly intervals. Results
demonstrate APEM's robust alignment with actual trends, low error metrics, and actionable health
insights—validating its lightweight probabilistic approach in simulating crowded indoor conditions.

Performance metrics—Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean
Squared Error (RMSE)—quantify accuracy (formulas in Methodology). A single hidden layer with 10
nodes and Adam optimizer ensured efficient convergence, yielding overall prediction accuracy of 99.3%
(as synthesized in Conclusion). Pollutant ranges align with quality classifications (Table 5.1: Good to
Highly Dangerous).

5.1 Overall Performance Summary

Tables 5.2 (5-minute) and 5.3 (hourly) summarize APEM's evaluation across attributes. Low errors reflect
strong generalization: RMSE penalizes outliers (intolerable in health contexts), while MAE provides
interpretable averages. Hourly modes slightly outperform 5-minute due to reduced noise in aggregated
trends, yet both enable proactive alerts—e.g., forecasting exceedances before peaks.

This performance surpasses many reviewed ML models, which often lack entropy ranking for dynamic
refinement. In the lab's poor-ventilation proxy, APEM captured rapid fluctuations absent in
chronic/outdoor-focused systems.

5.2 Carbon Dioxide (CO:) Prediction

COs., primarily from human exhalation in the occupant-limited lab (5-6 persons, 9:30 a.m.-5:00 p.m.),
exemplifies occupancy-driven risks in confined spaces.

Figures 5.1 (5-minute) and 5.2 (hourly) show predicted values tightly tracking actual trends: diurnal rises
during work hours, drops overnight. Errors remain minimal (Tables 5.2-5.3), with forecasts anticipating
spikes—enabling ventilation triggers before thresholds impair cognition/productivity.

Discussion: High CO: slows breathing and thinking; APEM's accuracy links directly to corrective actions,
addressing literature gaps in indoor proactive systems. Post-COVID, elevated levels in poorly ventilated
rooms correlate with transmission risk—APEM's short-term foresight supports occupancy management.
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5.3 Carbon Monoxide (CO) Prediction
CO levels remained low overall, consistent with no combustion sources and Table 5.1 safe ranges.

Figures 5.3 (5-minute) and 5.4 (hourly) illustrate near-perfect overlap, with predictions capturing subtle
variations. Low metrics confirm reliability for this insidious gas.

Discussion: As the "silent killer" impeding oxygen transport, even trace forecasts are vital—especially
for COVID patients vulnerable to hypoxia. APEM's sensitivity in low-regime data highlights superiority
over models struggling with sparse signals.

5.4 Nitrogen Dioxide (NO:) Prediction
NO: reached up to 4.7 ppm ("severely hazardous"), likely from HVAC byproducts in closed conditions.

Figures 5.5 (5-minute) and 5.6 (hourly) reveal predictions residing in the danger zone alongside actuals,
accurately forecasting persistence.

Discussion: NO: exacerbates pulmonary infections; post-COVID correlations with mortality underscore
risks in confined labs/offices. APEM's bounded forecasts quantify exposure duration, enabling preemptive
mitigation—unlike reactive literature systems.

5.5 Particulate Matter (PM:.s) Prediction
Normalized [0—1] PMa.s fell in "moderate" ranges, yet cumulative risks persist.

Figures 5.7 (5-minute) and 5.8 (hourly) show strong alignment, capturing accumulation from
activity/infiltration.

Discussion: PM..s penetrates bronchi/lungs, introducing pathogens—heightened COVID mortality link.
In remote-work eras increasing indoor time, APEM's moderate-range forecasts warn of long-term buildup,
supporting filtration alerts.

5.6 Air Temperature and Relative Humidity Prediction
Temperature (18-31°C) and humidity (11-18%, scaled) influence viral stability.
Figures 5.9-5.10 (temperature) and 5.11-5.12 (humidity) demonstrate precise tracking.

Discussion: Virus persists ~1 week at 22-25°C/40-50% humidity; lab's ranges highlight unfavorable
conditions in unventilated closures. APEM forecasts enable environmental adjustments (e.g.,
dehumidification), tying to fungal/mold risks in shut facilities.

5.7 Integrated Insights and Implications

APEM achieves 99.3% accuracy, with visualizations vividly superior in CO: (occupancy links) and
temperature/humidity (virus persistence)—evoking real-time decision urgency. Low errors enable
corrective procedures; probabilistic bounds quantify uncertainty absent in deterministic models.

Health implications: Forecasts address NO2/PM.2.s respiratory exacerbation, CO oxygen impairment—
critical post-pandemic. Compared

6. Conclusion & Future Work

As we reach the culmination of this exploration into the Air Pollution Estimation Model (APEM), let us
pause and reflect together: What has emerged most vividly for you across the journey—from the urgent
gaps in indoor air quality monitoring, through APEM's entropy-refined architecture and laboratory
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validation, to the predictive alignments that promise proactive safeguards? How might synthesizing these
threads not just restate findings, but illuminate a broader vision for healthier confined spaces?

6.1 Conclusion

The pervasive threat of air pollution, exacerbated by urbanization and inadequate ground-level
monitoring, has transformed indoor environments into hidden arenas of risk—particularly in crowded
settings where poor ventilation amplifies exposure to contaminants like CO2, NO2, and PM..s. Traditional
systems, often costly and reactive, fall short in delivering short-term forecasts essential for timely
interventions. This study addressed these challenges through APEM, a lightweight loT-based framework
integrating affordable Arduino-interfaced sensors with a novel probabilistic pipeline: K-Nearest
Neighbors clustering, regression-derived statistics, Shannon entropy ranking, and bounded predictions.

Implemented in a laboratory simulating real-world crowded indoors (limited ventilation, occupancy-
driven sources), APEM processed 36,388 records across eight attributes, forecasting the next 50 instances
at 5-minute and hourly intervals. Results demonstrated exceptional performance: 99.3% overall prediction
accuracy, with low MSE/MAE/RMSE across pollutants (Tables 5.2-5.3). Visualizations (Figures 5.1
5.12) revealed tight predicted-actual alignments—capturing CO: occupancy surges, persistent NO: in
danger zones, moderate yet cumulative PM..s, and temperature/humidity ranges influencing viral stability.

These outcomes affirm APEM's core contributions:

e Proactive Indoor Forecasting: Unlike literature's outdoor/chronic bias, APEM's short-term
probabilistic bounds enable alerts before thresholds, quantifying uncertainty via entropy for
dynamic reliability.

o Affordability and Accessibility: Low-cost MQ sensors and edge-compatible computation
democratize deployment, contrasting resource-intensive hybrids.

o Health-Relevant Insights: Forecasts directly tie to risks—CO impeding oxygen, NO2/PMa.s
exacerbating respiratory vulnerability—gaining urgency post-COVID, where confined spaces
heighten transmission and mortality correlations.

In essence, APEM shifts from mere monitoring to preventive intelligence, fostering sustainable smart
environments with reduced health burdens.

6.2 Future Work

While APEM validates a promising foundation, what horizons beckon beyond this prototype? The
document envisions expansions: ubiquitous multi-node networks for spatial granularity (overcoming
single-node limitations), additional sensors (e.g., radon, formaldehyde for comprehensive toxics), and
self-sufficient management (automated filters/exhausts conditioned on forecasts).

Further possibilities stir curiosity:

« Integration with ambient computing for seamless ecosystem responses (e.g., smart HVAC auto-
adjusting via APEM outputs).

« Clinical validation: Toxicology trials or epidemiological studies linking forecasts to occupant
outcomes.

e Hybrid phytoremediation: Coupling with tolerant plants for bio-augmented purification.
o Edge Al enhancements: On-device entropy computation for offline resilience.
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