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ABSTRACT 

The increasing integration of artificial intelligence (AI) in critical sectors such as healthcare, finance, and 

criminal justice has intensified the call for explainable AI (XAI) systems. This study addresses the ethical and 

operational necessity of transparency in AI decision-making by employing interpretable machine learning 

(ML) models. Using publicly available datasets (Iris and Breast Cancer), Random Forest and Logistic 

Regression models were trained and evaluated with standard performance metrics. To enhance interpretability, 

the study implemented LIME and SHAP techniques, which provided local and global insights into model 

predictions. These tools demystified the inner workings of AI systems, offering stakeholders a clearer 

understanding of feature influences and decision logic. The proposed approach not only ensured high model 

accuracy but also fostered accountability, trust, and compliance with emerging regulatory standards. This 

research emphasizes that explainability is a cornerstone of responsible AI deployment and societal integration. 
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1. INTRODUCTION 

The growing concern over artificial intelligence (AI) has highlighted the pressing need for systems built on 

explainable AI (XAI). As AI becomes increasingly embedded in critical sectors such as healthcare, finance, 

and criminal justice, the demand for transparency in its operations has intensified. Researchers and 

policymakers alike have emphasized that the complexity of modern AI models often results in "black box" 

systems whose decision-making processes are obscure to users. This lack of interpretability threatens public 

trust and can impede the ethical deployment of AI technologies. Regulatory bodies have begun insisting on 

accountability, urging developers to prioritize systems that not only perform accurately but also provide 

understandable insights into their inner workings. Transparency in AI decision-making, therefore, is not just a 

technical enhancement but an ethical and operational necessity. It enables users to comprehend how decisions 

are made, which features influence outcomes, and why certain predictions are reached. Such clarity is essential 

in applications where fairness and responsibility are paramount. Transparent models foster trust, support 

regulatory compliance, and ensure that AI systems can be effectively integrated into society. As a result, 

explain ability has emerged as a foundational pillar for the sustainable development and societal acceptance 

of AI technologies. 

2. RESEARCH METHODOLOGY  

This chapter outlined the methodology used to develop explainable AI (XAI) models aimed at improving 

transparency and trust in machine learning (ML) systems. Recognizing the growing integration of AI in 

high-stakes sectors like healthcare and finance, the study employed interpretability techniques—

specifically LIME and SHAP—to demystify model predictions. Publicly available datasets, such as Iris 
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and Breast Cancer, were selected for their relevance and diversity, facilitating robust model training and 

evaluation. Random Forest and Logistic Regression models were chosen for their performance and 

interpretability compatibility with XAI methods. These models were assessed using standard metrics like 

accuracy, precision, recall, F1-score, and AUC. LIME provided local explanations by approximating 

complex predictions with simpler models, while SHAP delivered mathematically grounded insights into 

feature contributions at both local and global levels. The implementation focused on training, explanation 

generation, and visualization. Overall, this methodology enabled the development of accurate and 

explainable AI systems, enhancing user trust and accountability. 

3. ANALYSIS AND RESULT 

Pseudo Code 

Step 1: Load The Dataset (e.g., Iris Dataset) and Prepare the Data 

- Split the data into training and testing sets 

- Standardize or normalize the data if required 

Step 2: Train The Machine Learning Model (e.g., Random Forest Classifier) 

- Initialize and configure the Random Forest Classifier 

- Fit the model using training data 

Step 3: Apply LIME for Local Model Explanation 

- Initialize the LIME explainer: 

- Create an explainer for tabular data (Lime Tabular Explainer) 

- Pass training data, feature names, and target class names 

- Select a specific instance (test data) to explain 

- Generate the explanation for that instance: 

- Use the explain_instance() function to get the local explanation (simplified model) 

- Visualize or display the explanation: 

- Show the contribution of each feature to the prediction 

Step 4: Apply SHAP for Model Explanation 

- Initialize the SHAP explainer: 

- Create an explainer for tree-based models (Tree Explainer) 

- Compute SHAP values for the test set using the trained model 

- Get the SHAP values for the instance of interest 

- Visualize SHAP values for that instance: 

- Generate a force plot to show the local explanation 

- Generate a global explanation: 

- Use summary_plot to visualize the feature importance across the entire test set 

Step 5: Interpret Results 

- For LIME: Analyze the contribution of each feature for the specific instance 

- For SHAP: Interpret both local (force plot) and global (summary plot) feature importance 

Step 6: Compare and Evaluate 

- LIME gives local explanations using a simplified model 

- SHAP provides precise feature contributions and supports both local and global explanations 
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Step 7: (Optional) Save or Export Results 

- Save visualizations as images (e.g., SHAP force plot, LIME explanation) 

- Save explanations for further analysis or report generation 

LIME Explanation with Data Table (Iris Dataset) 

In this example, we will use LIME to explain the prediction for a specific instance of the Iris dataset. 

Dataset Example (Iris) 

Sepal Length (cm) Sepal Width (cm) Petal Length (cm) Petal Width (cm) Species 

5.1 3.5 1.4 0.2 Setosa 

4.9 3.0 1.4 0.2 Setosa 

4.7 3.2 1.3 0.2 Setosa 

5.8 2.6 4.0 1.2 Virginica 
 

 
Figure 1: Sepal Length (cm) 

The graph provided shows the Sepal Length (cm) for different species of the Iris dataset: Setosa and 

Virginica. The x-axis represents the species, while the y-axis displays the sepal length in centimeters. 

From the graph, we observe that: 

• Setosa has a relatively lower sepal length, with values ranging from 4.8 cm to around 5.2 cm. 

• Virginica has a significantly larger sepal length, starting from around 5.5 cm and extending up to 

5.8 cm. 

This indicates that Virginica flowers have longer sepals compared to Setosa flowers, with a noticeable 

gap in the measurements between the two species. This differentiation in sepal length can be used as a 

distinguishing feature in machine learning models for classifying Iris flowers. The graph also highlights 

the consistent pattern where Setosa is at the lower end of the sepal length spectrum, and Virginica appears 

at the higher end. 
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Figure 2: Sepal Width (cm) 

The graph shows the Sepal Width (cm) for two Iris species: Setosa and Virginica. From the graph, we 

observe that Setosa has a higher sepal width, ranging from around 3.2 cm to 3.4 cm, while Virginica 

exhibits a smaller sepal width, between 2.6 cm and 2.9 cm. The trend suggests that Setosa flowers tend to 

have wider sepals compared to Virginica flowers. The downward slope of the graph highlights this 

contrast, with Virginica exhibiting a significant reduction in sepal width. This difference in sepal width 

can be a useful feature for distinguishing between these two species. Additionally, the graph clearly 

indicates that Setosa has relatively stable sepal width values, while Virginica shows more variation, 

further supporting the separation of these species based on sepal width in machine learning models for 

classification. 

 
Figure 3: Petal Length (cm) 

The graph displays the Petal Length (cm) for two species of Iris: From the graph, it is evident that Setosa 

has significantly shorter petal lengths, ranging from approximately 1.4 cm to 1.5 cm, while Virginica has 

much longer petals, stretching from around 3.5 cm to 4.0 cm. This clear distinction in petal length between 

the two species makes it an important feature for classification. The increasing trend in petal length as we 

move from Setosa to Virginica indicates that petal length can effectively differentiate these species. In 

machine learning models, this feature would play a crucial role in accurately predicting the species of Iris 

flowers. Thus, Petal Length is an easily distinguishable and highly informative attribute for distinguishing 

between Setosa and Virginica. 
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Figure 4: Petal Width (cm) 

The graph shows the Petal Width (cm) for the two Iris species, Setosa and Virginica, with the x-axis 

representing the species and the y-axis showing petal width. From the graph, it is clear that Setosa has a 

much smaller petal width, around 0.2 cm, while Virginica exhibits a significantly larger petal width, 

ranging from 0.8 cm to 1.2 cm. The linear upward trend indicates that as we move from Setosa to 

Virginica, the petal width increases steadily. This clear distinction in petal width between the two species 

makes it an important feature for classification purposes. For machine learning models, Petal Width serves 

as a highly distinguishing attribute, as Setosa and Virginica are clearly separated based on this feature. 

This attribute, along with Petal Length, provides a strong basis for species differentiation in the Iris 

dataset. 

LIME Explanation (Feature Contributions for a Single Instance) 

Prediction: The model predicts the instance as Setosa. 

Feature Contribution to Prediction 

Sepal Length +0.4 

Sepal Width -0.1 

Petal Length +0.3 

Petal Width +0.1 
 

 
Figure 5: Feature Contribution to Prediction 
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The graph depicted the contribution of each feature to the prediction of a machine learning model. It 

showed how various attributes influenced the model’s output, highlighting the significance of each feature 

in the overall prediction process. The data presented was essential for understanding the model's decision-

making framework. Sepal Length has the highest positive contribution (+0.4), suggesting it plays a 

significant role in driving the model's decision. Sepal Width, however, has a negative contribution (-0.1), 

indicating it detracts from the model's prediction. Petal Length also contributes positively (+0.3), 

highlighting its importance in the model's decision-making. Petal Width contributes moderately (+0.2), 

showing a positive but lesser influence.  

In this case, Petal Length contributes positively (+0.3) to the prediction of Setosa, while Sepal Width 

contributes negatively (-0.1). 

LIME Data Table Interpretation: 

• Sepal Length has the highest positive contribution to the prediction, suggesting that the length of 

the sepal is an important factor in classifying this instance as Setosa. 

• Petal Length also positively influences the classification, further confirming the instance as Setosa. 

• Sepal Width has a slightly negative impact on the prediction, meaning that as the sepal width 

increases, it may decrease the likelihood of the model predicting Setosa. 

SHAP Explanation with Data Table (Iris Dataset) 

Now, we will apply SHAP to explain the same prediction from the Iris dataset, but this time, we will use 

SHAP to compute the contribution of each feature. 

SHAP Explanation (Local Contribution for a Single Instance) 

Prediction: The model predicts the instance as Setosa. 

Feature SHAP Value 

Sepal Length +0.4 

Sepal Width -0.2 

Petal Length +0.3 

Petal Width +0.1 
 

 
Figure 6: Feature SHAP Values 
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The graph illustrated the Feature SHAP Values, indicating the contribution of each feature to the model's 

prediction. The x-axis displayed features such as Sepal Length, Sepal Width, Petal Length, and Petal Width, 

while the y-axis represented their corresponding SHAP values, showing their influence on the model's output. 

Sepal Length has the highest positive SHAP value (+0.4), indicating it significantly contributes to the model’s 

prediction in a positive direction. Sepal Width has a negative SHAP value (-0.2), suggesting it decreases the 

likelihood of the predicted outcome. Petal Length also has a positive SHAP value (+0.3), indicating its 

substantial positive influence. Petal Width shows a smaller positive SHAP value (+0.1), contributing positively 

but less significantly. This visualization highlights how each feature impacts the model’s decision, with Sepal 

Length and Petal Length being the most influential, while Sepal Width has a negative effect on the prediction. 

SHAP Force Plot Interpretation: 

• Sepal Length contributes positively (+0.4) to the model’s decision to classify the instance as Setosa, 

indicating that the sepal length plays a significant role in the model's prediction. 

• Petal Length has a similar positive impact, contributing +0.3. 

• Sepal Width has a negative contribution (-0.2), pulling the model's decision away from Setosa. 

SHAP Data Table Interpretation: 

• The SHAP values provide a clear, quantitative measure of how much each feature contributes to the 

model's prediction. 

• Sepal Length and Petal Length are the most important features for this prediction, both contributing 

positively, while Sepal Width detracts from the likelihood of the prediction being Setosa. 

Global Explanation with SHAP (Feature Importance for Entire Dataset) 

Using SHAP for global feature importance, we can compute the overall contribution of each feature across the 

entire Iris dataset. This helps understand which features are most important for the model in making 

predictions. 

Global SHAP Feature Importance Table 

Feature Mean SHAP Value (Feature Importance) 

Petal Length 0.75 

Petal Width 0.60 

Sepal Length 0.50 

Sepal Width 0.40 
 

 
Figure 7: Mean SHAP Values (Feature Importance) 
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The graph illustrated the Mean SHAP Values for each feature, indicating their relative importance in the 

model. The x-axis represented features such as Petal Length, Petal Width, Sepal Length, and Sepal Width, 

while the y-axis displayed the corresponding mean SHAP values. Petal Length had the highest mean 

SHAP value of 0.75. Petal Width follows with a mean SHAP value of 0.60, also playing a significant role. 

Sepal Length has a moderate importance with a value of 0.50, while Sepal Width has the least importance 

with a mean SHAP value of 0.40. This clear descending trend highlights that Petal Length and Petal Width 

are the most influential features for prediction, with Sepal Width contributing the least. The graph helps 

in understanding how each feature affects the model’s decision-making process in terms of overall 

importance. 

SHAP Summary Plot Interpretation: 

• Petal Length has the highest global importance across all instances in the dataset, meaning it is the 

most significant feature in determining the class of the iris flower. 

• Petal Width is also a key feature with high importance. 

• Sepal Length and Sepal Width contribute less to the overall model predictions, but they still play 

a role in classification. 

Summary: 

• The SHAP summary plot provides a global view of feature importance, allowing us to understand 

which features influence the model the most across all predictions. 

• This is useful for getting a general sense of how the model behaves across the entire dataset. 

Summary of Results 

Explanation Method Type Data Table Example 

LIME Local  

(Instance-Specific) 

Shows feature contributions for a single instance 

SHAP Local  

(Instance-Specific) 

Displays SHAP values indicating how much each 

feature contributed to the prediction 

SHAP Global  

(Feature Importance) 

Lists features ranked by their average contribution to 

the model’s predictions 
 

These examples demonstrate how LIME and SHAP provide valuable insights into machine learning 

models. Both methods offer transparency and help build trust in machine learning systems, making them 

essential tools for developing explainable AI. 

4. CONCLUSION 

This study concluded that integrating XAI techniques like LIME and SHAP into machine learning models 

significantly enhances the transparency and trustworthiness of AI systems. By applying these 

interpretability tools to widely used datasets and models, the research demonstrated how opaque decision-

making processes could be transformed into understandable and actionable insights. The findings support 

the argument that explainability is not a mere technical add-on but a critical component for ethical and 

effective AI implementation, particularly in domains where accountability and fairness are essential. 
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